CATALOGIC DI DIC AS AD NO. 40961 # CALIFORNIA INSTITUTE OF TECHNOLOGY RESONANCE OSCILLATIONS IN A HOT NON-UNIFORM PLASMA by Jerald V. Parker 409 614 Technical Report No. 20 Nonr 220(13) May 1963 A REPORT ON RESEARCH CONDUCTED UNDER CONTRACT WITH THE OFFICE OF NAVAL RESEARCH # RESONANCE OSCILLATIONS IN A HOT NON-UNIFORM PLASMA Ъy Jerald V. Parker Technical Report No. 20 CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California A Technical Report to the Office of Naval Research Contract Nonr 220(13) May 1963 # RESONANCE OSCILLATIONS IN A HOT NON-UNIFORM PLASMA J. V. Parker California Institute of Technology ## ABSTRACT The hydrodynamic equations of a hot non-uniform plasms are solved numerically in slab geometry to obtain the resonant frequencies and associated wave functions. The splitting of the various resonances is shown to depend on the parameter: (slab thickness • Debye length). ### Resonance Oscillations ### in a Hot Non-Uniform Plasma ### Jerald V. Parker Until recently the large splittings of the Dattner resonances have remained unexplained, although a small splitting can be shown to result from non-zero temperatures. In a recent letter Weissglas² has shown that results in qualitative agreement with observations can be obtained by assuming a non-uniform electron density. In order to facilitate comparison of the theory with experiment it is necessary to calculate the frequencies of the resonances for some approximately correct electron density distributions. The equations used below to describe the behavior of a non-uniform plasma in the collisionless approximation are the linearized hydrodynamic equations and Maxwell's equations. Since experiments have generally been conducted in plasmas for which one free space wavelength is large compared to the dimensions of the plasma, one can make a quasi-static analysis. The equations are then $$\frac{\partial n_1}{\partial t} + \nabla \cdot n_0 f(\underline{r}) \underline{y}_1 = 0 \tag{1}$$ $$\frac{\partial \mathbf{Y}_{1}}{\partial \mathbf{t}} = \frac{1}{\mathbf{m} \mathbf{n}_{0} \mathbf{f}} \left[-\mathbf{n}_{1} \mathbf{e} \, \mathcal{E}_{0} - \mathbf{n}_{0} \mathbf{f} \, \mathbf{e} \, \mathcal{E}_{1} - \nabla \, \mathbf{P}_{1} \right] \tag{2}$$ $$\nabla \cdot \underline{E}_1 = -\frac{e}{\epsilon_0} n_1 \tag{3}$$ where $n_{O}f(\underline{r})$ is the steady state electron density and where it has been assumed that $$n = n_0 f(\underline{x}) + n_1 \qquad f(0) = 1$$ $$\underline{y} = \underline{y}_1$$ $$\underline{\mathcal{E}} = \underline{\mathcal{E}}_0 + \underline{\mathcal{E}}_1$$ $$P = p_0 f + P_1$$ Since these waves will propagate adiabatically we can relate p_1 and m_1 as follows: $$p_1 = \gamma kT n_1 \tag{4}$$ Combining equations (1) through (4), assuming an $e^{-i\omega t}$ dependence, and letting $\mathcal{E}_1 = -\nabla \phi_1$ $$\nabla_{c}^{4} \not p_{1} - \frac{\mathbf{f'(r)}}{\mathbf{f(r)}} \nabla^{3} \not p_{1} + \frac{1}{\mathbf{f}} \left[\left(\frac{\mathbf{w}^{2}}{\mathbf{w}_{\mathbf{p_{0}}}^{2}} - \mathbf{f(r)} \right) \frac{1}{\lambda_{D}^{2}} - \frac{\mathbf{f''}}{\mathbf{f}} + \left(\frac{\mathbf{f'}}{\mathbf{f}} \right)^{2} \right] \nabla^{2} \not p_{1} - \frac{\mathbf{f'}}{n_{D}^{2}} \nabla \not p_{1} = 0$$ $$(5)$$ where $$\omega_{p_0}^2 = \frac{n_0 e^2}{m\epsilon_0} \qquad \qquad \lambda_D^2 = \frac{\epsilon_0 kT}{n_0 e^2}$$ are the plasma frequency and the Debye length at the point $\underline{r} = 0$. Despite the complexity of this equation the calculations progress quite easily if one chooses to work in plane geometry. If one considers the one-dimensional problem illustrated in Figure 1, the following simplifications can be made. First only $\mathcal{E}_{\mathbf{z}}$ exists which Figure 1. reduces the order of the equation by one; second, the resulting equation can be integrated once to yield $$\frac{\mathrm{d}^2 E_1}{\mathrm{d}z^2} - \frac{1}{\gamma} \frac{f'(z)}{f(z)} \frac{\mathrm{d}E_1}{\mathrm{d}z} + \frac{1}{\gamma n_D^2} \left[\frac{\omega^2}{\omega_{\mathbf{p}_O}^2} - f(z) \right] E_1 = K \qquad (6)$$ Using the boundary condition that V_1 normal vanishes at the edge of the plasma, one can evaluate the constant K . $$K = -\frac{\omega^2}{\omega_{p_0}^2} \frac{1}{\gamma \lambda_p^2} E_1(d) \qquad (7)$$ The final simplification results if one changes to the dimensionless variable s = z/d and recognizes that a resonance in this plane geometry is characterized by the vanishing of the external field so that one need solve only the homogeneous equation $$\frac{d^2E_1}{ds^2} - \frac{f!}{\gamma f} \frac{dE_1}{ds} - A(B - f)E_1 = 0$$ $$A = \frac{1}{\gamma} \left(\frac{d}{\lambda_D}\right)^2 , \qquad B = \left(\frac{\omega^2}{\omega_{\mathbf{p}_O}^2}\right)$$ The density functions f(z) used in these calculations are taken from the work of S. Self³ and represent theoretical curves for a low density plasma. They are shown in Figure 2. The small slope discontinuities are due to the approximation used in the calculations. The results of numerical solution of this equation for several values of the parameter $(\frac{d}{\lambda_D})^2$ are shown in Figure 3. The circle points are the results of numerical solution of the differential equation. The triangle points were found using the WKB method since the differential equation is difficult to solve for very short wavelengths. The dotted lines connecting the points are included to show which points belong to the same mode and to indicate the general trend of the frequencies but do not represent actual data. The solid line shows the ratio of mean density to the square of the frequency of the lowest mode $\frac{1}{n_0 f}/\omega_0^2$. In general it may be seen that the splitting of the resonant frequencies is dependent on the parameter (d/λ_D) and the splitting is largest for small values of this parameter. Figures 4 and 5 show how this strong splitting is induced by the non-uniform plasma density. Both figures show the electric field at resonance for various different modes. Figure 4 shows the modes ω_0 , ω_1 , ω_2 , ω_3 for a fixed value of $(d/\lambda_D)^2$. At a given frequency ω that portion of the plasma for which $\omega^2 > \frac{n(z)e^2}{m^2}$ $(z>z_c)$ can propagate plasma waves, while the remainder cannot. As ω is increased the propagating region becomes longer and successively more half wavelengths of the wave can be fit into it. In Figure 5 the mode ω_0 is shown for various values of $(\frac{d}{\lambda_D})^2$. One can see that as $(\frac{d}{\lambda_D})^2$ increases the wavelength of the oscillation decreases. Since the thickness of the sheath and the wavelength are proportional to λ_D the resonant frequency of the mode ω_0 , which can propagate primarily in the sheath region, tends to remain constant. It is conceivable that this effect might cause one or more resonances to remain at frequencies below the lowest plasma frequency $\frac{n_0 f(d) e^2}{m \varepsilon_0} \quad \text{(see Fig. 2 for } (d/\lambda_D)^2 = \alpha) \quad \text{in the limit } \lambda_D \to 0 \quad \text{This would mean that the resonances would remain split even in the limit of zero temperature and that the curves in Figure 3 would tend to a limit <math display="block">> 1 \quad \text{as } (\frac{d}{\lambda_D}) \to \infty \quad \text{This does not, however, seem to be the case although one cannot be certain of extrapolations based on such limited data.}$ I wish to express my appreciation to R. W. Gould and to the Office of Naval Research and the National Science Foundation for supporting this research. ### References - R. W. Gould, Proc. of the Linde Conference on Plasma Oscillations, 1959 (unpublished). - 2. P. Weissglas, Phys. Rev. Letters, 10, 206 (1963). - 3. S. Self, Physics of Fluids (To be published). Electron Density Profiles. The points where the local plasms frequency equals one of the resonant frequencies, i.e., F18. 2. $\frac{n_0}{m\epsilon_0} \frac{2}{f(s)} = \omega_1^2 \quad (1 = 0, 1, \cdots) \quad \text{are indicated.}$ Fig. 3. Resonant Frequencies and Average Density Fig. 4. $\mathbf{E}_{\mathbf{z}}$ versus $\mathbf{z} (\mathbf{d}/\lambda_{\mathbf{D}})^2 = 4740$ Fig. 5. E_z versus z for the Resonance ω_0 ### Wonr 220(13) ### DISTRIBUTION LIST | Chief of Naval Research 2
Navy Department - CODE 427
Washington 25, D. C. | Re
De | mmittee on Electronics 1
search and Development Board
spartment of Defense
shington 25, U. C. | | Electronic Components Div. Power Tube Department Microwave Lab at Stanford | ı | |---|-----------------|---|-------------|--|--------| | Director, Naval Research Lab. | Wa
At | rector, Matl.Bureau of Stds. lahington 25, D. C.
thn: Div.14.0 CRPL, Librarian
namanding Officer 1 | | Palo Alto, California Dr. E. D. McArthur Electron Tube Laboratory General Electric Company Schenectady, New York | ٠ | | CODE 5430 1 Commanding Officer 1 ONR Branch Office 1000 Geary Street San Francisco, California | En
Fo
Co | ngineering Res. and Dev. Lab
ort Belvoir, Virginia
ommanding Officer l
rankford Arsensi | ı | | 1 | | Scientific Liaison Officer 25
ONR, London
c/o Navy 100, Box 39, FPO
New York, New York | R1.
30
Ba | ridesburg, Philadelphia, Pa.
itel-McCullough, Inc. 1
11 Industrial Way
In Carlos, California
TH: Research Library | 1 | Johns Hopkins University
Radiation Laboratory
1315 St. Paul Street
Baltimore 2, Maryland
Attn: W.Poole, Librarian | 1 | | Commanding Officer OMR Branch Office 1030 E. Green Street Pasadena, California | Co
Wa | | 1 | Research Lab. of Electronics
Massachusetts Inst. of Tech.
Cambridge 39, Massachusetts | 1 | | Commanding Officer l ONR Branch Office The John Crerar Library Bldg. | A
2 | ommanding General, CRRE
.F. Cambridge Research Center
30 Albany Street
ambridge 39, Massachumetts | 1 | Sloane Physics Laboratory
Yale University
New Haven, Connecticut
Attn: R. Beringer | 1 | | 86 E. Randolph Street Chicago 1, Illinois Commanding Officer ONR Branch Office | R.
G | ommanding General RCRW
ome Air Development Center
riffiss Air Force Base
ome, New York | 1 | Mr. H. J. Reich
Department of Electrical Eng.
Yale University | 1 | | Office of Naval Research | 5
8
7 | | 1 | Hew Haven, Connecticut Laboratory for Insulation Res. Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Attn: A. von Rippel | 1 | | Navy 100, FPO New York, New York Chief, Bureau Aeronautics EL4 Navy Department EL43 | | Electronic Defense Laboratory
2.0. Box 205 | 1 | Lincoln Laboratory Massachusetts Inst. of Tech. Cambridge 39, Massachusetts | 1 | | Washington 25, D. C. BL45 . Chief, Bureau of Ordnance Navy Department Re 4 Washington 25, D. C. Re 9 | 1 [| Department of the Navy 820 | 1
1
1 | Dr. J. M. Lafferty, Manager
Physical Studies
General Electric Company
P.O. Box 1088 | 1 | | Chief of Naval Operations Op20X
Navy Department Op421
Washington 25, D. C. Op 55 | 1 P
1 P | Material Lab. Library 9128
New York Maval Shippard
Brooklyn 1, New York | 1 | Schenectady, New York General Electric Company One River Road Schenectady 5, New York | 1 | | Director, Naval Ordnance Lab.
White Oak, Maryland
Director, Naval Electronics Lab | _ ! | Office of Technical Services Department of Commerce Washington 25, D. C. | 1 | Attn: Miss W. Crain, Librarian
Technical Report Collection | 1. | | San Diego 52, California Dept. of Electronics-Physics | . : | Director CR4582
Air University Library
Maxwell A.F. Base, Alabama | 1 | 303A Pierce Hall
Harvard University
Cambridge 38, Massachusetts | | | U.S. Naval Post Grad. School
Monterey, California
Commander CODE 366
Naval Air Missile Test Center | 1 | Chief, Western Division Office of Aerospace Research Office of Scientific Research P.O.Box 2035, Pasadena, Calif. | 1 | Electron Tube Section
Electrical Engineering Dept.
University of Illinois
Champaign, Illinois | 1 | | Point Mugu, California U.S. Naval Proving Ground Attn: W. H. Benson | 1 | Technical Library Research and Development Board Pentagon Building Washington 25, D. C. | 1 | Chairman, Div.of Elec. Eng.
University of California
Berkeley 4, California | 1 | | Dahlgren, Virginia
Commander
U.S.Naval Air Development Cente
Johnsville, Pennsylvania | 1 | Advisory Group on Electron Tuber
346 Broadway (5th Floor)
New York 13, New York | • 1 | Radiation Laboratory
Tech. Information Division
University of California
Berkeley 4, California | | | Thermionics Branch
Signal Corps Eng. Labs.
Evans Signal Lab, Bldg.42
Belmar, New Jersey | 5 | Dr. G. E. Barlow
Australian Joint Service Staff
Box 4837
Washington 8, D. C. | 1 | Dr. A. W. Trivelpiece
Department of Elec. Eng.
University of California
Berkeley 4, California | 1 | | Commander Armed Services Tech. Inform. ATTM: TIPDR Arlington Hall Station | 10 | Microwave Library
W. W. Hansen Labs. of Physics
Stanford University
Stanford, California | 1 | Periodicals Librarian
General Library
California Inst. of Technolog
Pasadens, California | a
1 | | Arlington 12, Virginia Ballistics Research Labs Aberdeen Proving Ground | 2 | Engineering Library
Stanford University
Stanford, California | | Dr. Z. Kaprielian
Electrical Engineering Dept.
University of Southern Calif.
Los Angèles 7, California | 3 | | Maryland
Attn: D.W.H. Delsasso
Chief, Ordnance Develop. Div.
Natl.Bureau of Standards | 2 | Electronics Lab. Library
Stanford University
Stanford, California | 1. | Supervisor of Research Lab.
Electrical Engineering Bldg.
Purdue University | 3 | | Connecticut Av, Van Ness St.NW
Washington 25, D. C.
Naval Research Laboratory | 6 | Technical Library
General Electric Microwave Lab
601 California Avenue
Palo Alto, California | . 1 | Lafayette, Indiana
Georgia Institute of Techn.
Atlanta, Georgia
ATTM: Librarian | : | | Washington 25, D. C. | | | | WYTH: THE PARTY PORT | | | | | | | Page 1 | |--|---|--|----------|---| | W. E. Lear
University of Florida
Department of Electrical Eng.
Gainesville, Florida
Director Electronics Defense | | Countermeasures Laboratory
Cilfillan Brothers, Inc.
1815 Vanice Boulevard
Los Angules, California
The Rand Corporation | 1 | Applied Research, RCA
Camden 2, New Jersey
ATTN: R. E. Skinner
Bldg.10-8, Sect.421 | | Engineering Research Inst.
University of Michigan
Ann Arbor, Michigan | • | 1700 Main Street Santa Monica, California ATTH: Librarian | 1 | Bomac Laboratories, Inc.
Salem Road
Beverly, Massachusetts
ATTN: Arthur McCoubrey | | Cornell Aeronautical Lab
Cornell Research Foundation
Buffalo 21, New York | 1 | Motorola Riverside Res. Lab.
8330 Indiana Avenue
Riverside, California
ATIN: Mr. John Byrne | 1 | Aerospace Corporation
Poet Office Box 95085
Los Angeles 45, California
Attn: F. L. Vernon, Jr. | | Director, Microwave Res.Inst.
Polytechnic Inst.of Brooklyn
55 Johnson Street
Brooklyn 1, New York | 1 | Ramo-Wooldridge Corporation
Control Systems Division
F.O. Box: 900B | 1 | Space-General Corp.
9200 E. Flair Drive
El Nonte, California | | University of Washington
Department of Elec. Eng.
Seattle, Washington
ATTN: E. A. Harrison | 1 | Hawthorne, California
ATTN: Librarian | | ATTH: Bruce Ferrell, Lib. Horthern Electric Co. Ltd., Research and Devel. Labs. | | A. V. Eastman University of Colorado Department of Elec. Eng. Boulder, Colorado | 1 | Dr. James E. Shepherd
General Manager
Sperry Rand Research Center
P.O. Box 400 | 1 | Library, Dept. 8421 P.O. Box 3511, Station C Ottawa, Ontario, Canada Dalmo Victor Company | | University of Colorado
Engineering Experiment Sta.
Boulder, Colorado | 1 | Sudbury, Massachusetts W. L. Maxson Corporation 460 West 34th Street | 1 | Division of Textron, Inc.
Belmont, California
ATTH: Librarian | | ATTM: W. G. Worcester Electrical Engineering Dept. Princeton University Princeton, New Jersey | 1 | Hew York 1, New York
ATTN: M. Simpson
Bertram G. Ryland, Manager
Spencer Laboratory | 1 | Dr. W. B. Drumond
General Atomic
P. O. Box 608
Sen Diego 12, California | | Professor W. P. Dyke
Linfield College
McMinnville, Oregon | 1 | Raytheon Manufacturing Co.
Burlington, Massachusetts
Westinghouse Electric Corp. | 1 | Dr. M. Gottlieb
Princeton University
Plasma Physics Laboratory | | Research Lab.of Electronics
Chalmers Institute of Tech.
Gothenburg, Sweden
ATTN: Librarian | 1 | Electronic Tube Division
Elmira, New York
ATTM: Mr. S.S.King, Librarian
Mr. Gilbert Kelton | 1 | Princeton, New Jersey Dr. R. F. Post Radiation Laboratory Livermore, California | | Columbia Radiation Lab.
538 W. 120th Street
New York 27, New York | 1 | Security Officer Philips Laboratories Irvington-on-Hudson, New York | | Dr. W. Kunkel
U.C. Radiation Laboratory
Berkeley, California | | Cascade Research | , | R. E. McGuire, Librarian
Boeing Airplane Company
P.O. Box 3707
Seattle 24, Washington | 1 | Dr. R. J. Mackin Jet Propulsion Laboratory Passalena, California | | 5245 San Fernando Road
Los Angeles 39, California | 1 | A. Simon
General Atomic
P. O. Box 608
San Diego, California | 1 | Dr. M. Allen
Micromya Associates
Burlington, Massachusetts | | Varian Associates 611 Hansen Way Palo Alto, California John Dyer | 1 | Image Instruments, Inc.
2300 Washington Street
Newton Lower Falls 62, Mass. | 1 | Dr. Irving Kaurman
Space Technology Laboratories
1 Space Park
Redondo Beach, Calif. | | Airborne Instrument Lab
Mineola, New York
Bell Telephone Laboratories | 1 | Sylvania Electric Prod. Inc.
Waltham, Massachusetts
ATTN: Charles A. Thornhill | 1 | | | Murray Hill, New Jersey
ATTN: J. R. Pierce
Hughes Aircraft Company
Culver City, California | 1 | Research Division Library
Raytheon Company
28 Seyon Street
Waltham 54, Massachusetts | 1 | | | ATTR: Mr. Milek, Librarian | ı | ITT Laboratories
15151 Bledsoe Street
San Fernando, California | 1 | | | | 1 | Technical Research Group Inc.
2 Aerial Way
Syosset, New York | | | | Technical Information Library
463 W. Street
New York 14, New York
RCA Laboratories | 1 | Advanced Techniques Branch
Electronics Technology Lab.
Aeronautical Systems Division
Wright-Patterson AFB, Ohio | 1 | | | Princeton, New Jersey ATTN: Dr. W. M. Webster Federal Telecommunic. Labs | 1 | Microwave Physics Laboratory
Sylvania Electric Products
P.O. Box 1296
Mountain View, California | 1 | | | 500 Washington Avenue
Nutley, New Jersey
ATTN: W. Derrick
K. Wing | 1 | U. S. Atomic Energy Commission
Tech. Information Service Ext.
P.O. Box 62 | 1 | | | • | | Oak Ridge, Tennessee | | |